skip to main content


Search for: All records

Creators/Authors contains: "LaJeunesse, Todd C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Symbiotic mutualisms are essential to ecosystems and numerous species across the tree of life. For reef-building corals, the benefits of their association with endosymbiotic dinoflagellates differ within and across taxa, and nutrient exchange between these partners is influenced by environmental conditions. Furthermore, it is widely assumed that corals associated with symbionts in the genusDurusdiniumtolerate high thermal stress at the expense of lower nutrient exchange to support coral growth. We traced both inorganic carbon (H13CO3) and nitrate (15NO3) uptake by divergent symbiont species and quantified nutrient transfer to the host coral under normal temperatures as well as in colonies exposed to high thermal stress. Colonies representative of diverse coral taxa associated withDurusdinium trenchiiorCladocopiumspp. exhibited similar nutrient exchange under ambient conditions. By contrast, heat-exposed colonies withD. trenchiiexperienced less physiological stress than conspecifics withCladocopiumspp. while high carbon assimilation and nutrient transfer to the host was maintained. This discovery differs from the prevailing notion that these mutualisms inevitably suffer trade-offs in physiological performance. These findings emphasize that many host–symbiont combinations adapted to high-temperature equatorial environments are high-functioning mutualisms; and why their increased prevalence is likely to be important to the future productivity and stability of coral reef ecosystems.

     
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  2. Abstract

    Coral reefs are declining worldwide, yet some coral populations are better adapted to withstand reductions in pH and the rising frequency of marine heatwaves. The nearshore reef habitats of Palau, Micronesia are a proxy for a future of warmer, more acidic oceans. Coral populations in these habitats can resist, and recover from, episodes of thermal stress better than offshore conspecifics. To explore the physiological basis of this tolerance, we compared tissue biomass (ash-free dry weight cm−2), energy reserves (i.e., protein, total lipid, carbohydrate content), and several important lipid classes in six coral species living in both offshore and nearshore environments. In contrast to expectations, a trend emerged of many nearshore colonies exhibiting lower biomass and energy reserves than colonies from offshore sites, which may be explained by the increased metabolic demand of living in a warmer, acidic, environment. Despite hosting different dinoflagellate symbiont species and having access to contrasting prey abundances, total lipid and lipid class compositions were similar in colonies from each habitat. Ultimately, while the regulation of colony biomass and energy reserves may be influenced by factors, including the identity of the resident symbiont, kind of food consumed, and host genetic attributes, these independent processes converged to a similar homeostatic set point under different environmental conditions.

     
    more » « less
  3. Abstract

    The existence of widespread species with the capacity to endure diverse, or variable, environments are of importance to ecological and genetic research, and conservation. Such “ecological generalists” are more likely to have key adaptations that allow them to better tolerate the physiological challenges of rapid climate change. Reef‐building corals are dependent on endosymbiotic dinoflagellates (Family: Symbiodiniaceae) for their survival and growth. While these symbionts are biologically diverse, certain genetic types appear to have broad geographic distributions and are mutualistic with various host species from multiple genera and families in the order Scleractinia that must acquire their symbionts through horizontal transmission. Despite the considerable ecological importance of putative host‐generalist symbionts, they lack formal species descriptions. In this study, we used molecular, ecological, and morphological evidence to verify the existence of five new host‐generalist species in the symbiodiniacean genusCladocopium. Their geographic distribution and prevalence among host communities corresponds to prevailing environmental conditions at both regional and local scales. The influence that each species has on host physiology may partially explain regional differences in thermal sensitivities among coral communities. The potential increased prevalence of a generalist species that endures environmental instability is a consequential ecological response to warming oceans. Large‐scale shifts in symbiont dominance could ensure reef coral persistence and productivity in the near term. Ultimately, these formal designations should advance scientific communication and generate informed research questions on the physiology and ecology of coral‐dinoflagellate mutualisms.

     
    more » « less
  4. Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships. 
    more » « less
  5. null (Ed.)